Parallel computing algorithm for real-time mapping between large-scale
networks

Ethan Zhang!, Amirmahdi Tafreshian' and Neda Masoud'

Abstract—In this paper, we propose a scalable massively-
parallel algorithm to solve the general mapping problem in
large-scale networks in real-time. The proposed parallel al-
gorithm takes advantage of GPU architecture and launches
millions of workers to calculate values on a target network
simultaneously. Threads are managed through the SIMT ex-
ecution model and target values are updated through atomic
operations. Our experiments show the proposed algorithm can
accomplish network mapping (find importance weights for
links in a real-world large-scale shared-mobility network) with
more than 2 million weights within 1.82 us (microsecond-
level), which is truly real-time. The algorithm performance
suggests that mapping computations may no longer be the
bottleneck in highly dynamic network-centered problems, as
the computations can be completed faster than the solid state
drive (SSD) read access latency. Compared to serial algorithms,
the speedup is more than 12,000 times. The proposed algorithm
is also scalable. Results on simulated data show that even
when the network size grows exponentially, microsecond-level
computing performance can still be obtained, and even more
than 190,000 times speedup can be achieved. The proposed
algorithm can serve as a cornerstone for ultra-fast processing
of highly dynamic large-scale networks.

Keywords: Parallel computing, Network mapping, CUDA

I. INTRODUCTION

Recent advancements in communications technology have
created high levels of inter- and intra-network connectivity.
This connectivity has increased the rate and volume of
data exchange as well as the range of data transmission.
Higher levels of connectivity have had transformative effects
in many domains, such as social and medical sciences,
and are on the verge of revolutionizing others, such as
transportation networks. To take advantage of the diverse
and high-volume data available in this big-data era, there is a
need for developing computational methods that enable real-
time decision-making. A state-wide transportation network
can include millions of nodes evolving dynamically, with
critical geolocation and traffic stream-related information
changing in real-time. This makes real-time decision-making
with traditional, sequential/serial algorithms in such large-
scale networks nearly impossible, as these methods consume
tremendous time. Carrying out computations in networks typ-
ically requires frequent weight updates on the corresponding
graphs. In practice, due to the large scale of the networks,
it might be challenging to obtain the node/link weights
of the target networks directly from the initial networks.
As such, creating inter-mediate layers/networks may help

LE. Zhang, A. Tafreshian and N. Masoud are with Department of Civil
and Environmental Engineering, University of Michigan, Ann Arbor, MI,
USA, 48105 shuruiz@Qumich.edusatafresh@Qumich.edu;
nmasoud@umich.edu.

speed-up the process. There are also instances in which
weights of a target network are computed directly based on
weights from other networks [1]. In both cases, the goal
is to obtain values for the elements on the target layer
(nodes or arcs) based on the values of the source layer, and
perhaps through some intermediate layers. Inspired by the
“virtual network mapping” problem in [2], we refer to this
type of problems as the network mapping problems. The
network mapping problem is a general problem that arises
in distributed networks and multi-layer networks. In these
networks, a network/controller/monitor generally needs to
gather values/results from other networks and update its own
values based on a set of rules [3].

Real-time analysis and decision-making on large-scale
transportation networks are challenging due to the need for
frequent processing of large streams of data. Real-time route
planning, path-planning, and forecasting are some of the
application domains where big data can be used to enhance
the quality of decision-making. However, there are not much
studies in the literature that address the resulting compu-
tational burden. Delayed analysis can lead to performance
loss, which can prove costly in safety-critical operations.
(e.g., advanced driving assistance systems (ADAS) or Con-
nected Automated Vehicle (CAV) operations). Furthermore,
the promise of a revolution in the transportation network that
is based on high-frequency real-time data streams can only
be materialized if such data can be processed and analyzed in
real-time. Therefore, to obtain up-to-date processing results,
microsecond-level computation is required. Current methods
for calculation on large-scale networks can be categorized
into three classes: (i) solving problems with time-delay,
i.e., provide delayed analysis results; (¢7) reducing computa-
tional complexity by solving approximate problems; and (z¢%)
employing large computer clusters (e.g., supercomputers or
cloud computing clusters) to enable real-time analysis.

In this work, we propose a scalable parallel algorithm
that utilizes the CUDA parallel programming platform [4]
to solve mapping problems in large-scale transportation net-
works in the matter of microseconds. Our proposed algorithm
utilizes a single graphics processing unit (GPU) device. The
proposed method is truly real-time (faster than solid state
drive (SSD) read access latency) and less costly than super-
computers or cloud clusters. In contrast to serial algorithms
that use a single worker, the proposed algorithm employs
millions of simultaneous workers to compute values on the
target network. Compared to other parallel algorithms de-
signed to use the central processing unit (CPU) architecture,
the proposed algorithm utilizes a single instruction command

to control massively asynchronous threads, and synchronizes
them with barriers and atomic operations, thereby greatly re-
ducing the solution time complexity. It also does not require
the use of supercomputers or computer clusters to achieve
real-time performance, which makes the algorithm much
more accessible and implementable for real-time systems.

The proposed parallel algorithm uses the single instruction
multiple threads (SIMT) execution model to manage parallel
threads/workers to compute the values on the target network.
For each value in the source network layer, a thread is
automatically generated and assigned to manage it. Threads
carrying values are routed by a virtual router, and the
corresponding values are sent to desired destinations in the
target layer to update the target value asynchronously. Since
the whole process is massively parallel (i.e., for all target
element values, their calculations are started at the same
time rather than in sequence), the total computing time is
shortened to the computation time of computing a single
target element in the target network. That is, assuming the
size of the target and source layers to be m and n (n > m)
respectively, time complexity of the proposed algorithm is
close to O(;:). Compared to traditional sequential/serial
algorithms, whose time complexity is O(n), the speedup is
tremendous considering the large values of m and n in large-
scale networks.

II. RELATED WORK

Real-time solutions in transportation systems not only
allow local and state agencies to allocate resources more
effectively, but also enable individual travelers to better
plan their future activities. Hence, many efforts have been
made to boost the computational efficiency of transportation-
related problems. However, most of the methodologies used
to increase time efficiency rely on cloud computing plat-
forms or computer clusters [5], [6]. In general, the existing
computational methods in the transportation literature either
rely on sequential/serial algorithms or CPU-based parallel
algorithms. CPU-based algorithms suffer from high imple-
mentation cost and much slower speedup as well as lower
efficiency. Serial algorithms can be time-consuming and are
not scalable. For example, assume we need to use values
of a source network layer to calculate target network values
and each target network element has its own mapping rule.
A serial algorithm reads values from the source network
layer and calculates results one by one. Considering a target
network with several million elements, the process will be
executed millions of times, which can take anywhere from
several minutes to several days. In other words, these meth-
ods either require huge amounts of computational resources
or they cannot produce real-time results.

The problem of mapping between networks has been of
interest in multiple domains for a long time. Efforts on
addressing the time complexity of mapping have increased
only in the recent years, due to the emergence of high-
frequency and diverse data sources consumed by real-time
operations. Y. Chou et al. use an approximate method to
calculate shortest path [7]. To solve the shortest path in

a large graph, when aggregating the sub-graph results, a
mapping process appears to connect the sub-graph results
to original graph. Ines Houidi et al. proposed a distributed
algorithm to achieve fast mapping between substrate network
and the target virtual network in a highly dynamic and
changing environment [2] in the communication field. It
maintains up-to-date information by introducing multiple
distributed agents and letting agents communicate with each
other to calculate the virtual network (target network). With
the distributed algorithm, workload can be distributed to
several workers. However, the algorithm can have time
delay and message overload because of the communication
between those distributed agents. Time delay and the number
of required messages grow tremendously with the network
size, which impairs its performance when applied to large-
scale networks.

Parallel computing already shows its potential in trans-
portation networks. M.R. Hribar et al. implement the parallel
shortest path algorithm for transportation application [8].
When calculating a 257 x 257 matrix, its relative speedup
is 8 times with 128 CPU cores. Although the speedup and
efficiency of their approach are not significant comapred
to the current parallel computing methods, it is still much
faster than the serial methods. G. Ghiani et al. also indicates
parallel computing can provides fast solution on the vehicle
routing problem [9]. Previous parallel computing algorithms
and methods are mainly based on CPU architecture, which
requires a large number of CPU cores to achieve a large
speedup. CPU-based parallel computing can either result in
a large number of communication messages between workers
(CPU cores) or fail to achieve microsecond-level computa-
tion. For example, message passing interface (MPI), which
is the most popular communication method used to conduct
parallel computing on distributed memory CPU cores, can be
extremely slow when the communication tunnel is blocked
by large amount of upcoming messages. This makes it
unlikely to obtain real-time information when the target
network is large-scale. With the development of graphics
processing units (GPU) technology in the recent decade,
massively parallel computing can be achieved in a more
efficient way. GPU uses more transistors on data processing
while CPU uses lots of transistors on data caching and flow
control, which makes GPU more suitable for computationally
intensive tasks [10].

In our work, we propose a GPU-based parallel algorithm
to address the mapping problem. This algorithm gains more
than 12,000 times speedup with only one GPU device, when
solving the problem of finding importance weights of all
links in a shared mobility network with more than 2 million
nodes. We also show that even if the network size grows ex-
ponentially, real-time (microsecond-level) performance still
holds and the speedup exceeds a factor of 190,000. D. Kirk
et al. indicate that 2 or 3 times speedup are just faster and
more than 100 times faster is fundamentally different [11].
Based on the performance of the proposed algorithm, we
believe that this methodology can be used to alleviate the
computational burden of future mapping problems in the field

of transportation.

III. PROBLEM FORMULATION

1) Source network layer: In the mapping problem, let us
denote x as the source network layer and set . as the
source network set, i.e., the source network layer (source)
can contain multiple source networks. We denote the source
network s; € . as a directed graph G5, = (Ns,, Ls,),
where N, is the node set and L, is the edge/link set. Both
nodes and links can have values associated with them. To
make the problem statement more concise, and without loss
of generality, in this paper we assume that only links hold
values. For any s;,s; € & and i@ # j, Ly, N Ly, = (. The
node and link sets in the source network layer are represented
as:

k k
A =N, =L (1)
i=1 i=1
where k is the size of set .. The source network layer
provides data and information to calculate the values on the
target network.

2) Target network layer: The target network, denoted by
7, utilizes data from the source network and is shared by
all source networks. Let us define the directed graph G =
(N, L) to correspond to the target network (target). The
target network can be computed based on the information
provided by the source networks.

3) Mapping rules: To calculate values of the target net-
work layer from the source network layer, a set of mapping
rules are required. Let us define the set of mapping rules as
M. Mapping rules are element-wise; that is, each element
e in the target network has its own mapping rule, F.. An
F, € M is a mapping whose inputs are a set of elements
from the source layer and a set of operations to be performed
on them, and its outcome is the value of element e in the
target network. We re-formulate the problem so as to have
the same number of mapping rules as the size of the source
layer. Elements of the source layer that do not contribute to
the target value computations will have empty mapping rules
associated with them.

4) Objective: The objective of the network mapping
problem is to find J = M(x), i.e., to calculate values
of the elements in the target graph based on the source
network layer. Hence, the goal is to calculate Lp,, =
Fr,,(A,Z), Vi,j € Np, where Lz, denotes link (i, j)
in the target network graph, and Fr,, is the mapping rule
for link Lr,,.

IV. PARALLEL MAPPING ALGORITHM

1) parallel architecture: With the aforementioned formu-
lation, the goal is to calculate all Lr,; with its Fr,;. When
calculating all Lr,,, the traditional serial way is comprised
of the following steps:

1) for each operation in the reformatted mapping rule,

obtain the desired value from the source network layer
to prepare for updating the target value.

2) update L7, according to Fr,, with obtained values
from the source network layer.
With the reformatted source layer size n and target layer
size m, assuming all operations take unit time, the time
complexity of the serial approach is O(n), which is slow
for the large size n.

Assume the values in source layer and target layer are
denoted by S and T'. To solve this problem, as each target
element is the results of FTij, we launch tons of threads
and assign one thread to each value in the source layer
automatically according to the size of S . The maximum
number of threads of a CUDA-enabled GPU device is
32 x (232 — 1) x 65535 x 65535 [12]. Therefore, the method
is capable of handling almost all large-scale transportation
networks known so far. We reshape the source and target
into one-dimension stencils (1-D array) and construct the
mapping rules as a bridge between the source and target
stencils. A thread goes to the source layer to get a value
and uses the bridge as a virtual router. Each element in the
target layer serves as a destination for threads. Since each
thread carries a value obtained from the source layer and the
value is used to update an element in the target layer, the
router assigns the thread to its destination. Once a thread is
routed to its destination, its value is used to update the target
element according to its mapping rule. The thread routing
architecture is illustrated in Figure 1.

| T | Q | L | T |T4 | |Tn173|7:,x72|7:,x71| T,

RR K

\ N\
N\

L \
\ N\
N\
— r \/\\
“ \
\
| S5 |S] |S2 | S3 | M |55 | |S,,—5| Sy—a S"-»‘l Su2 .S?,,_llsn |

Source layer

Fig. 1: Threads routing illustration between source layer and
target layer

Note that if a value in the source layer is used to calculate
multiple target values, or if a target value is used to calculate
another target value, dummy elements can be introduced
and appended to the source layer (with the corresponding
mapping rules added to the router) so that each thread only
deals with one value of the source stencil. In Figure 1, let the
elements of the target layer be the sum of some elements in
the source layer. Suppose based on a mapping rule we have
Ty = So+ S+ 55+ S, _5, as depicted in Figure 1. Thus, the
4 threads that carry Sy, S3,S5 and S,,_5 will be routed to
destination 7. Similarly, another example in Figure 1 shows
the mapping rule S, _4,S,—3 and S,,_; will be routed to
Tn—3. All threads work in parallel. Since we are dealing
with large-scale networks, the size of the mapping rule set
M 1is tremendous. Managing such large number of workers
is a complex task. Therefore, we use the SIMT execution
model, which uses a single general execution command

to control all threads. Note that in parallel computing, we
have to control the behavior of each worker instead of
controlling the whole process, i.e., the algorithm is designed
to control one worker, yet all workers can use the same
algorithm. Unlike CPU-based parallel computing (e.g., MPI
based parallel computing), with SIMT, no communication
exists among workers. In other words, each thread/worker
only knows its own status and conducts its own work without
knowing status of other threads. Hence, it is hard for the
threads to collaborate with each other to achieve their goal.
We will discuss the collaboration issue under this situation
in the following sections.

2) Thread management: In CUDA, a GPU device is
represented by a grid. Inside a grid, blocks are arranged
in three dimensions, represented by x, y and z. Threads
are stored in blocks in three dimensions. Since only current
block coordinates and local (block-level) thread coordinates
are known to each thread, thread management is necessary to
make sure all threads work properly. Due to the complexity
of working with three-dimensional grids and blocks (i.e., the
resulting nine-dimensional space), and the possible higher
latency that could result from working in higher dimensional
spaces, we present the thread management method for two-
dimensional grids and blocks. With a source stencil of size
n, let the block shape be 32 x 32, i.e., for each block,
both its x and y directions have 32 threads, resulting in a

H 1 (‘3/251] grid shape, i.e., the total number of blocks are
[T] . Therefore, total number of threads that can be used

is 322 x [%]2 > n. To effectively manage the millions of
available threads, a global thread index is assigned to each
thread to serve as its unique ID. Thread ID is essential for the
router to distinguish a worker’s identity. In this framework,
we require that S; is routed by thread . The simplest way of
indexing threads is using ordered integer values so that we
can directly use the indices for counting the total number of

threads. The indexing rules are demonstrated in Figure 2.

Grid

! !
block || block block
a.n @)
block block
m) m)
4

Block
counting
“+., directions
. inside a

grid

Block

Tead || Thead | Thread
©0 0 ()

& Thread
- counting
“~._ directions
’ insidea
“ block

Fig. 2: Threads indexing rule

In both grid and block levels, the following approach
is used for indexing: the entity in the northwest corner is
assigned the index 0. We index the rest of the entities by
first prioritizing the each direction, followed by the south

direction. This procedure is demonstrated in Figure 2. Each
thread knows the block to which it belongs as well as its own
local coordinates within that block, and uses this information
for self-indexing (i.e., obtaining a unique global ID). Note
that in the CUDA platform, block and thread IDs are counted
starting from 0. Assuming a thread ¢ is located in block ¢,
the self-indexing algorithm is demonstrated in Algorithm 1.

Algorithm 1 Thread self-indexing algorithm

Result: Global thread index

Input: Grid dimension (Grid;,Grid,), block dimension
(Blocks, Blocky)

1. Get current block coordinate (bg,b,) in the grid, and its
own thread coordinates (¢,,t,) in block i

2. Calculate number of total blocks B and total threads K
before i:

B =b, x Grid, + b, + 1

2)
K = B x Block, x Block,
3. Calculate global index of thread t¢:
tia = K + 1, x Blocky + 3)

Return ;4

Once t;4 is obtained, the corresponding thread is assigned
to element S[t;q] of the source layer.

3) Race condition and atomic operation: According to
the mapping architecture shown in Figure 1, several threads
may need to update one destination value in a mapping
process. As we know, all values are stored in the device
memory with an address. As we mentioned before, one
thread has no knowledge about the status of other threads.
That will make several threads update the same address
simultaneously, referred to as the race condition [13], i.e.,
threads are racing to update the same memory and the result
of one thread will be replaced/covered by the results of the
following thread.

Running time

N . final it
Device memory/address storing 7, m: r_es7u _‘SS
G =17=5

4
Write result 7;,
tomemory,

Read T,
Thread X update the value i
7,is replaced

and getresult 7, =T, +5, =S,
Thread x : >

er(e result 7
i to memory,

Read T, £7;1s replaced

Thread y update the value
: and get result
v Ty=T, 45, =5,

Fig. 3: Race condition between threads in a mapping problem
with mapping rule of adding the source values

Suppose we want to calculate the value of element ¢ on
the target network based on a simple addition of values
of elements x and y in the source network, i.e., T, =
Sy + Sy. Recall that we employ a threat for each source-
network element, providing us with two threads x and y.
This example is illustrated in Figure 3. The work is assigned

to two parallel workers, and each worker needs to do one
addition update on Tj. Thread x reads 7, = 0 from the
device memory at time ¢y, and starts performing operations
to update Tp according to the mapping rule 7, = T, + S..
At time to, thread & completes it computations and writes
Té = S, into the memory. Due to the speed difference in
command executions between the two threads, thread y reads
T, at t1,t9 < t1 < to. Since Ty, is not yet updated by thread
2 at time t;, thread y reads the value T, = 0 from the
shared memory. Thread y finishes its task and gets its own
calculation result 7' é’ =T, + S, between times ¢; and ¢3. At
time tg, it writes the result back into the memory, erasing the
results written into the memory by thread z at ¢5, as thread y
has no knowledge of the status of other threads. Therefore,
the race condition results in the final result of 7, = S,
rather than T, = S, + S,

To avoid race condition when solving the mapping prob-
lem with millions of parallel threads/workers, we use atomic
operation to safely lock the device memory that stores target
values and force other racing threads to wait for the lock. In
atomic operation, when the target value is read by a thread,
the thread will put a lock on the value. The lock is released
when the thread updates the target value in memory. While
the memory is locked, all coming threads who need to use
the locked portion of the memory have to wait for the lock.
Once the lock is released, other threads can get the lock
and start the process again. Note that the lock on a target
memory does not affects threads that operate on other target
memories. The process is shown in Figure 4.

Running time

. . final result is
Device memory/address storing 7, 115,45

Get to the 4

lock, reserve A
it. Read T, l Iygrﬁeﬁw reloase
atomicAdd T, =7, +5, =5, '

lock
Thread x — -

Write result 7,
o memory.

Get to the i
lock. Wait for Reserve the Release lock
the lock Eo

9 YTy =Ty kS =SS,

atomicAdd

Fig. 4: Atomic operation to get target value correctly

In Figure 4, thread x locks the memory associated with
T'(q) at time t¢, and starts its computations. At time ¢;, thread
y attempts to obtain 7'(g), but since there is a lock on T'(q), y
can only reserve the lock. At time 5, x updates the memory
and returns the lock, at which point y instantaneously obtains
the lock as well as the current value of T'(q) = S,. Thread
y completes its computations and returns the final value of
T(q) = Sz+S, along with the lock at time ¢3. Following this
approach, although threads are asynchronous and have no
knowledge about status of other threads, they can collaborate
with each other to get the correct final values. The proposed
parallel algorithm is summarized in Algorithm 2.

V. NUMERICAL RESULTS

In this section, we provide numerical results to show the
performance of the proposed algorithm with both real-world

and simulated cases. In shared mobility services, a common
practice for dealing with stochastic ride-sourcing demand is
to route drivers proactively. In order to find high-quality
routes, one can use historical data to find the importance
(positive weight) of different links of a network discretized
in time and space. Then, a useful route can be easily
obtained by finding the longest path in the aforementioned
network. That is, we aim to search for the route that provides
the highest weight (e.g., highest revenue). Given a large-
scale transportation network, finding high-quality routes in
a timely manner using this procedure can be challenging.
Here we use the proposed parallel algorithm to enhance the
computational efficiency of this procedure.

Algorithm 2 GPU-based SIMT Parallel mapping algorithm

Result: calculated target network

Input: Source networks ., target network .7, mapping rules
M

1.Construct the 1-D stencil source layer S, target layer 7'
and mapping rules M according to ., 7 and .# . Allocate
memory for S, T and M on CPU(host) and GPU(device).
Copy values from the host memory to the device memory.

2. Construct block shape as 32 x 32 and grid shape as
H%L % | grids, where n is the size of source layer
stencil.

3. Locate current thread coordinates (t,,t,) and block co-
ordinates (b, b,). Calculate current global thread ID ¢4
based on Algorithm 1.

4. Assign thread t¢;4 to the source element S[t;4]. Use the
mapping rule to find the destination in the target layer
stencil.

5. Once thread ;4 is routed by the mapping rule and reaches
the target address, use S|t;q] to perform Atomic operations
to update the target address.

6. Synchronize threads in a block to make sure threads
in the same block complete their tasks. Exit device and
synchronize device on host to wait for threads in different
blocks finishing their tasks so that all target elements are
updated.

7. Copy the result from device back to host. Output calcu-
lated target network 7.

Suppose we have a timed origin-destination table that
provides the number of customers who started their trips
at time ¢’ from station 4’ to station j'. Further, let a link in
the transportation network be presented by a tuple (¢,4,).
Given stationary traffic conditions, we can specify whether
link (¢,4,j) is a part of shortest path for every trip (¢',’, j’)
of customers. Let A be an ordered 1-D array that contains
the weight of all valid combinations of (¢,4, j) and (¢',4', j').
This weight can be any function of number of customers
and trip and link costs (e.g., travel times). Suppose that the
weight of every link (¢, 4, j) is the sum of the trip weights in
A that corresponds to this link, which shows the importance
of the link (¢,4,) (a higher weight indicates more (¢',4’, j’)
trips can use the link). Let C' be a 1-D array of all link

weights. Finally, let B be a 1-D array of the same size as
A that contains the indices of C. Now, we are interested
in parallelizing the calculation of the elements of the target
array C, based on the elements of source array A and the
mapping rules of B. The problem can be posed as W(; ;) =
S tirgrany W o> (i, 4,1), 3f (4,4, 1) s contained in trip
(¢,4',t'), where P is the table that contains all (i',j’,¢)
information. The trips in this case study are obtained from
the New York taxi dataset.

With the proposed parallel algorithm, the computing time
of the above problem is 0.001824 ms (1.82 us). The speed
is much faster than SSD read access latency (50 us [14]).
For the same problem, the running time of the conventional,
serial algorithm is 0.0217 seconds, i.e., the speedup is 1.2 x
10* times compared to serial algorithm. The improvement
is tremendous. As future networks are going to be much
larger, we expand the scale of the dataset by simulating the
source layer values and mapping rules. Based on Amdahl’s
law, with n parallel workers, the speedup is no greater
than a factor of n, i.e., with serial time we can compute
the upper bound performance of any CPU-based parallel
algorithm. Therefore, only serial CPU time is provided here.
The corresponding performances are shown in TABLE I.
Running time for serial and the proposed parallel algorithm
are recorded in seconds and microseconds separately.

TABLE I: Algorithm Performance

Source Target n/m Serial Parallel ~ Speedup
size n size m time (s) (us)

1x10% | 1x10% | 1x10%2 0.004025 14.624 275
2x106 | 1x10% | 2x102 0.005206 15.072 345
4%x10% | 1x10* | 4x102 0010870 17.088 636
8x10% | 1x10%* | 8 x102 0.019802 17.056 1161
1x107 | 1x10% | 1x10° 0.026285 17.184 1530
2x107 | 1x10* | 2x10% 0.050087 15360 3261
4%x107 | 1x10* | 4x10% 0.104406 14.400 7250
8x 107 | 1x10* | 8 x 103 0.222599 241.344 922
1x107 | 1x10° | 1x10%2 0049775 1.824 27289
2x107 | 1x10% | 2x102 0.091239 1.952 46741
4%x107 | 1x10° | 4x102 0165317 2.016 82002
8x 107 | 1x10° | 8 x102 0347196 26.176 13264
1x107 | 1x105 | 1 x 10T 0.143704 1.856 77427
2x107 | 1x10% | 2x 101 0357694 1.842 194188
4x107 | 1x10% | 4x 10 0754735 1920 393091
8x 107 | 1x10% | 8 x 101 1.580698 21.504 73507
1x10% | 1x105 | 1x10%2 2044502 47.424 43111

The results indicate that even if the source layer size
increases exponentially, the algorithm can still achieve
microsecond-level performance, which indicates the scala-
bility of the proposed parallel algorithm. Race condition and
waiting time spent on locks account for the observed non-
linear speedup; that is, the time complexity of the parallel
algorithm does not strictly follow O(7:) because when
performing calculations, threads have to read global device
memory frequently, which can consume a large portion of
time. In addition, the number of locks needed by each
thread is not uniformly distributed (i.e., not %). However,
the computing time of the proposed algorithm is highly
correlated with %, which is the number of average locks for

which a thread has to wait. As shown in the results, when
the source layer size is even ten times larger, its computing
time can be much shorter if it has a smaller % value.

VI. CONCLUSIONS

In this paper, we propose a scalable parallel computing
algorithm to solve mapping problems between large-scale
networks in truly real-time. We provide a three-layer parallel
architecture, which contains a source layer, a router, and a
target layer. The algorithm utilizes the great potential of GPU
device to generate tons of workers to compute results in
parallel. All threads are managed with the SIMT execution
model. Collaborations between workers are achieved through
atomic operation, which reduce the time complexity of
the network mapping problem from O(n) to approximately
O(7%), where n,m indicate the source and target layer size,
with n > m. Our numerical results show that the algorithm
can find importance weights of all links in a real-world
large-scale shared-mobility network with more than 2 million
edges/weights within 1.82 us (microsecond-level), which
is a 12,000 times speedup compared to serial computing.
Experiments show that even when the network size grows
exponentially, microsecond-level performance can still be
obtained, and more than 190,000 times speedup is achieved.

REFERENCES

[11 Y. Zhang, L. Wang, W. Sun, R. C. Green II, and M. Alam, “Distributed
intrusion detection system in a multi-layer network architecture of
smart grids,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp.
796-808, 2011.

[2] 1. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual net-
work mapping algorithm,” in Communications, 2008. ICC’08. IEEE
International Conference on. 1EEE, 2008, pp. 5634-5640.

[3] D. Peleg, “Distributed computing,” SIAM Monographs on discrete
mathematics and applications, vol. 5, pp. 1-1, 2000.

[4] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[5] Z.Li, C. Chen, and K. Wang, “Cloud computing for agent-based urban
transportation systems,” IEEE Intelligent Systems, vol. 26, no. 1, pp.
73-179, 2011.

[6] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Ver-
scheure, H. Koutsopoulos, and C. Moran, “Ibm infosphere streams for
scalable, real-time, intelligent transportation services,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management
of data. ACM, 2010, pp. 1093-1104.

[71 Y.-L. Chou, H. E. Romeijn, and R. L. Smith, “Approximating shortest
paths in large-scale networks with an application to intelligent trans-
portation systems,” INFORMS journal on Computing, vol. 10, no. 2,
pp. 163-179, 1998.

[8] M. R. Hribar, V. E. Taylor, and D. E. Boyce, “Implementing parallel
shortest path for parallel transportation applications,” Parallel Com-
puting, vol. 27, no. 12, pp. 1537-1568, 2001.

[9]1 G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno, “Real-time
vehicle routing: Solution concepts, algorithms and parallel computing
strategies,” European Journal of Operational Research, vol. 151, no. 1,
pp. 1-11, 2003.

[10] C. Nvidia, “Toolkit documentation,” NVIDIA CUDA getting started
guide for linux, 2014.

[11] D. Kirk et al., “Nvidia cuda software and gpu parallel computing
architecture,” in ISMM, vol. 7, 2007, pp. 103-104.

[12] C. Nvidia, “Nvidia cuda ¢ programming guide,” Nvidia Corporation,
vol. 120, no. 18, p. 8, 2011.

[13] M. J. Quinn, “Parallel programming,” TMH CSE, vol. 526, 2003.

[14] P. Specification, “Intel® solid-state drive dc s3500 series,” 2015.

